GenAI Engineer Projects — 20 Portfolio Ideas to Get Hired in 2026
1. Introduction and Motivation
Section titled “1. Introduction and Motivation”In the current hiring landscape for GenAI engineering roles, your portfolio projects carry more weight than academic credentials. Employers do not care about your degree or certifications; they care about your ability to build systems that work in production. This is a fundamental shift from traditional software engineering, where formal education often served as a proxy for capability.
The market demand for GenAI engineers far exceeds supply, but this does not mean hiring standards have dropped. On the contrary, companies are highly selective because failed AI projects are expensive. A bad hire who deploys hallucinating systems or creates security vulnerabilities can cost millions. Your portfolio must prove you can be trusted with production systems.
Why Projects Matter More Than Credentials:
- Demonstration over declaration: Anyone can list “LangChain” on a resume. Building a system that handles edge cases, implements proper error handling, and scales under load proves actual competence.
- Portfolio as conversation starter: Interviewers will spend 60-70% of technical discussions on your projects. Poor projects lead to shallow conversations. Strong projects demonstrate depth.
- Proof of production thinking: Academic exercises optimize for correctness. Production systems optimize for reliability, cost, maintainability, and observability. Your projects must show you understand this distinction.
- Differentiation in a crowded field: Bootcamp graduates and self-taught developers all build the same tutorial projects. Distinctive, well-architected systems make you memorable.
The Portfolio Mindset:
Treat your GitHub profile as a product. Each repository should tell a story: what problem you solved, why you made specific architectural choices, how you handled failures, and what you would do differently with more resources. Code quality, documentation, and deployment matter as much as functionality.
2. Real-World Problem Context
Section titled “2. Real-World Problem Context”Understanding what employers actually evaluate in portfolio projects is essential for building the right things. After reviewing hundreds of GenAI engineering candidates and speaking with hiring managers at companies ranging from Series A startups to FAANG, clear patterns emerge.
What Employers Actually Look For:
| Evaluation Dimension | What They Want to See | Red Flags |
|---|---|---|
| System Thinking | Architecture diagrams, component separation, clear interfaces | Monolithic scripts, no modularity, everything in one file |
| Production Awareness | Error handling, logging, monitoring, rate limiting | Happy-path only code, no error handling, missing logs |
| Trade-off Analysis | Documented decisions with pros/cons | ”I used X because it’s popular” without justification |
| Testing Strategy | Unit tests, integration tests, evaluation frameworks | No tests, manual verification only |
| Operational Concerns | Dockerfiles, deployment configs, cost tracking | ”Works on my machine”, no deployment path |
| Code Quality | Type hints, docstrings, consistent style, linting | Untyped code, no documentation, inconsistent formatting |
The Three-Project Rule:
Quality consistently beats quantity. Three exceptional projects that demonstrate depth across different domains will outperform ten shallow tutorial implementations. Your portfolio should tell a coherent story about your capabilities.
Selecting Projects for Your Target Role:
- Junior roles (0-2 years): Focus on projects that demonstrate you can learn, follow patterns, and write clean code. Employers expect to teach you, but you must prove you are teachable.
- Mid-level roles (2-5 years): Projects should show independent system design, deployment experience, and the ability to optimize for non-functional requirements like latency and cost.
- Senior roles (5+ years): Build systems that demonstrate architectural judgment, scalability thinking, and the ability to make complex trade-offs. Include projects that show technical leadership potential.
3. Core Concepts and Mental Model
Section titled “3. Core Concepts and Mental Model”Before diving into specific projects, understand what separates portfolio-worthy projects from tutorial implementations. This mental model will guide every architectural decision you make.
The Portfolio-Worthiness Framework:
A project is portfolio-worthy when it demonstrates one or more of the following:
- Complex Integration: Multiple systems working together (LLM, database, cache, API) with clear interfaces and error handling
- Scale Thinking: Design decisions that would hold up under increased load, even if the current implementation is small
- Operational Maturity: Monitoring, deployment, and maintenance considerations built in from the start
- Domain Expertise: Deep understanding of a specific problem space (legal, medical, finance) with appropriate constraints and safety measures
- Innovation: Novel approaches to known problems, or novel applications of existing techniques
The Layered Architecture Pattern:
Most production GenAI systems follow a consistent layered pattern:
┌─────────────────────────────────────────────────────────────┐│ Presentation Layer ││ (Web UI, API endpoints, CLI interface) │└─────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────┐│ Application Layer ││ (Request validation, orchestration, session management) │└─────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────┐│ Core Logic Layer ││ (RAG pipeline, agent workflows, prompt templates) │└─────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────┐│ Infrastructure Layer ││ (LLM clients, vector DB, cache, external APIs) │└─────────────────────────────────────────────────────────────┘Each layer has a single responsibility and communicates through well-defined interfaces. This separation enables testing, swapping implementations, and reasoning about the system.
The Failure-First Design Principle:
Production systems spend most of their time handling edge cases, not the happy path. Design your projects assuming:
- The LLM will hallucinate or timeout
- The vector database will be temporarily unavailable
- User input will be malformed or malicious
- External APIs will return errors or rate limit
- Network calls will fail intermittently
Every component should have a fallback strategy. Document these decisions in your README.
4. Step-by-Step Explanation
Section titled “4. Step-by-Step Explanation”This section provides detailed specifications for eight projects across three career levels. Each specification includes problem context, architecture, technology choices, implementation milestones, testing strategy, deployment approach, and interview preparation.
5. Architecture and System View
Section titled “5. Architecture and System View”Before examining individual projects, understand the architectural patterns common to production GenAI systems.
The Standard RAG Pipeline:
┌─────────────────────────────────────────────────────────────────┐│ INGESTION PIPELINE │├─────────────────────────────────────────────────────────────────┤│ ││ Raw Documents → Parsing → Chunking → Embedding → Vector Store ││ ↑ ││ (PDF, HTML, (Text (OpenAI, (Pinecone, ││ Markdown) extraction) open source) Weaviate) ││ │└─────────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────────┐│ QUERY PIPELINE │├─────────────────────────────────────────────────────────────────┤│ ││ User Query → Embedding → Retrieval → Reranking → LLM → Response││ ↑ ↑ ││ (Optional: (Vector + Keyword (Cross-encoder (GPT-4, ││ Query rewrite) hybrid) scoring) Claude) ││ │└─────────────────────────────────────────────────────────────────┘The Agent Orchestration Pattern:
┌─────────────────────────────────────────────────────────────────┐│ AGENT ORCHESTRATOR ││ (State management, routing, error handling) │└─────────────────────────────────────────────────────────────────┘ │ │ │ │ ▼ ▼ ▼ ▼┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐│ Search │ │ Analysis │ │ Action │ │ Response ││ Agent │ │ Agent │ │ Agent │ │ Agent │└──────────┘ └──────────┘ └──────────┘ └──────────┘ │ │ │ │ └──────────────┴──────────────┴──────────────┘ │ ▼ ┌──────────────────┐ │ Shared State │ │ (Checkpoints) │ └──────────────────┘The Multi-Tenant SaaS Architecture:
┌─────────────────────────────────────────────────────────────────┐│ API Gateway ││ (Auth, rate limiting, routing) │└─────────────────────────────────────────────────────────────────┘ │ ┌───────────────┼───────────────┐ ▼ ▼ ▼ ┌─────────┐ ┌─────────┐ ┌─────────┐ │ Tenant │ │ Tenant │ │ Tenant │ │ A │ │ B │ │ C │ │(Isolated│ │(Isolated│ │(Isolated│ │ Data) │ │ Data) │ │ Data) │ └─────────┘ └─────────┘ └─────────┘ │ │ │ └───────────────┼───────────────┘ ▼ ┌────────────────────┐ │ Shared Services │ │ (LLM, Embedding) │ └────────────────────┘6. Practical Examples
Section titled “6. Practical Examples”Beginner Level: Career Entry
Section titled “Beginner Level: Career Entry”These projects demonstrate foundational skills. Focus on code quality, clear documentation, and understanding the basic patterns.
Project 1: Document Q&A System
Section titled “Project 1: Document Q&A System”Problem Statement:
Organizations generate vast amounts of unstructured documentation (PDFs, manuals, reports) that employees need to query efficiently. Traditional search is keyword-based and misses semantic meaning. Build a system that allows users to upload documents and ask natural language questions, receiving accurate answers grounded in the document content.
Why This Matters:
Document Q&A is the most common enterprise GenAI use case. It demonstrates your ability to implement the core RAG pattern that powers countless production systems. Every interviewer will understand this problem domain.
Architecture Diagram:
┌─────────────────────────────────────────────────────────────────┐│ CLIENT LAYER ││ ┌─────────────┐ ┌─────────────────────────────┐ ││ │ Streamlit │ │ File Upload Component │ ││ │ Web UI │◄────────────►│ (Drag & Drop, Progress) │ ││ └─────────────┘ └─────────────────────────────┘ │└─────────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────────┐│ API LAYER ││ FastAPI Application │├─────────────────────────────────────────────────────────────────┤│ ││ POST /upload → DocumentHandler → Processing Pipeline ││ POST /query → QueryHandler → RAG Pipeline ││ GET /documents → ListHandler → Metadata Store ││ │└─────────────────────────────────────────────────────────────────┘ │ ┌──────────────────┼──────────────────┐ ▼ ▼ ▼┌───────────────┐ ┌───────────────┐ ┌───────────────┐│ DOCUMENT │ │ VECTOR │ │ LLM ││ PROCESSING │ │ STORE │ │ CLIENT │├───────────────┤ ├───────────────┤ ├───────────────┤│ pdfplumber │ │ ChromaDB │ │ OpenAI API ││ (extraction) │ │ (in-memory │ │ GPT-4o-mini ││ │ │ or persist) │ │ ││ Recursive │ │ │ │ Async client ││ chunking │ │ Cosine sim │ │ with retry ││ (500 tokens, │ │ retrieval │ │ logic ││ 50 overlap) │ │ │ │ │└───────────────┘ └───────────────┘ └───────────────┘Technology Stack:
| Component | Technology | Version | Purpose |
|---|---|---|---|
| Web Framework | FastAPI | 0.115+ | Async API endpoints |
| UI | Streamlit | 1.40+ | Rapid prototyping interface |
| Document Parsing | pdfplumber | 0.11+ | PDF text extraction |
| Text Chunking | langchain-text-splitters | 0.3+ | Semantic chunking |
| Embeddings | OpenAI text-embedding-3-small | API | Document/query vectors |
| Vector Store | ChromaDB | 0.6+ | Local vector storage |
| LLM | OpenAI GPT-4o-mini | API | Answer generation |
| Validation | Pydantic | 2.10+ | Request/response models |
| Testing | pytest | 8.3+ | Unit and integration tests |
File Structure:
document-qa-system/├── README.md├── requirements.txt├── pyproject.toml├── Dockerfile├── docker-compose.yml├── .env.example├── .gitignore├── src/│ ├── __init__.py│ ├── main.py # FastAPI application entry│ ├── config.py # Configuration management│ ├── models/│ │ ├── __init__.py│ │ ├── schemas.py # Pydantic models│ │ └── enums.py # Domain enums│ ├── services/│ │ ├── __init__.py│ │ ├── document_service.py # Document processing│ │ ├── embedding_service.py # Embedding generation│ │ ├── retrieval_service.py # Vector search│ │ └── llm_service.py # LLM interaction│ ├── core/│ │ ├── __init__.py│ │ ├── exceptions.py # Custom exceptions│ │ ├── logging_config.py│ │ └── constants.py│ └── api/│ ├── __init__.py│ ├── routes.py # API endpoint definitions│ └── dependencies.py # FastAPI dependencies├── ui/│ └── streamlit_app.py # Streamlit interface├── tests/│ ├── __init__.py│ ├── conftest.py # pytest fixtures│ ├── unit/│ │ ├── test_document_service.py│ │ ├── test_retrieval_service.py│ │ └── test_llm_service.py│ └── integration/│ └── test_api.py└── docs/ └── architecture.md # Design decisionsImplementation Milestones:
| Milestone | Duration | Deliverable | Success Criteria |
|---|---|---|---|
| M1: Project Setup | 2 days | Repository with structure | Tests run, linting passes |
| M2: Document Processing | 3 days | PDF extraction pipeline | 95%+ text extraction accuracy |
| M3: Vector Pipeline | 3 days | Embedding and storage | Sub-100ms retrieval latency |
| M4: RAG Integration | 4 days | End-to-end Q&A | 80%+ answer relevance (manual) |
| M5: Web Interface | 3 days | Streamlit UI | Upload, query, display flow works |
| M6: Testing & Polish | 3 days | Test suite, documentation | 80%+ code coverage |
Testing Strategy:
import pytestfrom unittest.mock import Mock, patchfrom src.services.retrieval_service import RetrievalService
class TestRetrievalService: @pytest.fixture def mock_chroma(self): return Mock()
@pytest.fixture def service(self, mock_chroma): return RetrievalService(chroma_client=mock_chroma)
def test_retrieve_returns_formatted_results(self, service, mock_chroma): """Retrieval should return context documents with scores.""" mock_chroma.query.return_value = { "documents": [["chunk1", "chunk2"]], "distances": [[0.1, 0.3]], "metadatas": [[{"source": "doc1"}, {"source": "doc1"}]] }
results = service.retrieve(query="test query", top_k=2)
assert len(results) == 2 assert results[0]["content"] == "chunk1" assert results[0]["score"] == 0.9 # Converted from distance
def test_retrieve_handles_empty_results(self, service, mock_chroma): """Should gracefully handle no matches found.""" mock_chroma.query.return_value = { "documents": [[]], "distances": [[]], "metadatas": [[]] }
results = service.retrieve(query="nonsense query", top_k=5)
assert results == []
def test_retrieve_respects_top_k(self, service, mock_chroma): """Should respect the top_k parameter.""" mock_chroma.query.return_value = { "documents": [["a", "b", "c", "d", "e"]], "distances": [[0.1, 0.2, 0.3, 0.4, 0.5]], "metadatas": [[{}] * 5] }
results = service.retrieve(query="test", top_k=3)
assert len(results) == 3Deployment Approach:
# DockerfileFROM python:3.12-slim
WORKDIR /app
# Install system dependenciesRUN apt-get update && apt-get install -y \ gcc \ && rm -rf /var/lib/apt/lists/*
# Copy requirements first for layer cachingCOPY requirements.txt .RUN pip install --no-cache-dir -r requirements.txt
# Copy application codeCOPY src/ ./src/COPY ui/ ./ui/
# Create volume for persistent storageVOLUME ["/app/data"]
# Expose ports for both API and UIEXPOSE 8000 8501
# Health checkHEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \ CMD curl -f http://localhost:8000/health || exit 1
# Default command runs APICMD ["uvicorn", "src.main:app", "--host", "0.0.0.0", "--port", "8000"]version: '3.8'
services: api: build: . ports: - "8000:8000" environment: - OPENAI_API_KEY=${OPENAI_API_KEY} - CHROMA_PERSIST_DIR=/app/data/chroma volumes: - chroma_data:/app/data/chroma healthcheck: test: ["CMD", "curl", "-f", "http://localhost:8000/health"] interval: 30s timeout: 10s retries: 3
ui: build: . command: streamlit run ui/streamlit_app.py --server.port=8501 --server.address=0.0.0.0 ports: - "8501:8501" environment: - API_URL=http://api:8000 depends_on: api: condition: service_healthy
volumes: chroma_data:What Interviewers Will Ask:
-
“How did you handle PDFs with tables and images?”
- Expectation: Discussion of extraction limitations, choice of pdfplumber for table support, acknowledgement that images require OCR or multimodal models
-
“What chunking strategy did you use and why?”
- Expectation: Recursive character splitting with overlap, explanation of trade-offs between chunk size and context preservation
-
“How do you prevent the system from making up answers when documents do not contain the information?”
- Expectation: System prompt instructions, confidence thresholds, “I do not know” responses
-
“What would you change to support 1000 concurrent users?”
- Expectation: Async processing, connection pooling, vector database scaling, caching layer
Project 2: Resume Analyzer
Section titled “Project 2: Resume Analyzer”Problem Statement:
Job seekers struggle to tailor resumes for specific positions. Recruiters spend seconds scanning resumes and miss qualified candidates due to formatting or keyword issues. Build a tool that analyzes a resume against a job description, extracts key requirements, scores alignment, and provides specific improvement suggestions.
Why This Matters:
This project demonstrates structured output extraction, comparative analysis, and practical utility. HR tech is a major GenAI application area, and this project shows you can build tools with measurable business value.
Architecture Diagram:
┌─────────────────────────────────────────────────────────────────┐│ INPUT LAYER │├─────────────────────────────────────────────────────────────────┤│ ┌─────────────────┐ ┌─────────────────────────┐ ││ │ Resume Upload │ │ Job Description Input │ ││ │ (PDF, DOCX) │ │ (Text paste, URL) │ ││ └─────────────────┘ └─────────────────────────┘ │└─────────────────────────────────────────────────────────────────┘ │ │ ▼ ▼┌─────────────────────────────────────────────────────────────────┐│ EXTRACTION PIPELINE │├─────────────────────────────────────────────────────────────────┤│ ││ ┌─────────────────────────────────────────────────────────┐ ││ │ Resume Extraction Agent │ ││ │ • Personal info (name, contact) - Pydantic model │ ││ │ • Work experience (company, role, dates, bullets) │ ││ │ • Skills (technical, soft skills) │ ││ │ • Education (degree, institution, year) │ ││ │ • Projects (title, description, technologies) │ ││ └─────────────────────────────────────────────────────────┘ ││ │ ││ ▼ ││ ┌─────────────────────────────────────────────────────────┐ ││ │ Job Description Extraction Agent │ ││ │ • Required skills (must-have vs nice-to-have) │ ││ │ • Experience level (years, seniority) │ ││ │ • Key responsibilities │ ││ │ • Company culture indicators │ ││ │ • Salary range (if present) │ ││ └─────────────────────────────────────────────────────────┘ │└─────────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────────┐│ ANALYSIS ENGINE │├─────────────────────────────────────────────────────────────────┤│ ││ ┌──────────────┐ ┌──────────────┐ ┌──────────────────────┐ ││ │ Skill │ │ Experience │ │ Semantic │ ││ │ Matching │ │ Comparison │ │ Similarity │ ││ │ Algorithm │ │ Logic │ │ Scoring │ ││ │ │ │ │ │ │ ││ │ Exact match │ │ Years calc │ │ Resume embedding │ ││ │ Fuzzy match │ │ Level check │ │ JD embedding │ ││ │ Synonyms │ │ Gap analysis │ │ Cosine similarity │ ││ └──────────────┘ └──────────────┘ └──────────────────────┘ ││ │└─────────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────────┐│ OUTPUT GENERATION │├─────────────────────────────────────────────────────────────────┤│ ││ ┌─────────────────────────────────────────────────────────┐ ││ │ Analysis Report (Structured) │ ││ │ │ ││ │ Overall Match Score: 72/100 │ ││ │ │ ││ │ Strengths: │ ││ │ ✓ Strong technical skills alignment (Python, AWS) │ ││ │ ✓ Relevant 5 years experience │ ││ │ │ ││ │ Gaps: │ ││ │ ✗ Missing: Kubernetes experience │ ││ │ ✗ Missing: Team leadership experience │ ││ │ ! Warning: Resume uses "managed" instead of "led" │ ││ │ │ ││ │ Recommendations: │ ││ │ 1. Add Kubernetes to skills section │ ││ │ 2. Quantify impact in project descriptions │ ││ │ 3. Use stronger action verbs │ ││ └─────────────────────────────────────────────────────────┘ │└─────────────────────────────────────────────────────────────────┘Technology Stack:
| Component | Technology | Version | Purpose |
|---|---|---|---|
| Document Parsing | python-docx, pdfplumber | 1.1+, 0.11+ | Resume extraction |
| Structured Output | Pydantic | 2.10+ | Schema validation |
| LLM | OpenAI GPT-4o-mini | API | Extraction and analysis |
| Text Similarity | sentence-transformers | 3.4+ | Semantic matching |
| Web UI | Gradio | 5.0+ | Simple interface |
| Async | asyncio | stdlib | Concurrent processing |
| Testing | pytest, pytest-asyncio | 8.3+ | Test framework |
Implementation Milestones:
| Milestone | Duration | Deliverable | Success Criteria |
|---|---|---|---|
| M1: Schema Design | 2 days | Pydantic models for resume/JD | Validation passes on samples |
| M2: Resume Parser | 3 days | PDF/DOCX extraction | 90%+ field extraction rate |
| M3: JD Parser | 2 days | JD text extraction | Structured output consistent |
| M4: Analysis Engine | 4 days | Matching and scoring | Manual evaluation agrees 75%+ |
| M5: Report Generation | 2 days | Formatted recommendations | Actionable, specific advice |
| M6: UI & Polish | 2 days | Gradio interface | End-to-end flow complete |
Key Code Pattern - Structured Extraction:
from pydantic import BaseModel, Fieldfrom typing import List, Optionalfrom datetime import datefrom enum import Enum
class SkillLevel(str, Enum): EXPERT = "expert" ADVANCED = "advanced" INTERMEDIATE = "intermediate" BEGINNER = "beginner"
class WorkExperience(BaseModel): company: str = Field(description="Employer name") title: str = Field(description="Job title") start_date: Optional[date] = Field(None, description="Start date") end_date: Optional[date] = Field(None, description="End date or null if current") is_current: bool = Field(False, description="Whether this is current position") bullets: List[str] = Field(default_factory=list, description="Achievement bullets")
@property def duration_months(self) -> int: """Calculate experience duration in months.""" end = self.end_date or date.today() return (end.year - self.start_date.year) * 12 + (end.month - self.start_date.month)
class ResumeData(BaseModel): name: str = Field(description="Candidate full name") email: Optional[str] = Field(None, description="Contact email") phone: Optional[str] = Field(None, description="Contact phone") linkedin: Optional[str] = Field(None, description="LinkedIn URL") summary: Optional[str] = Field(None, description="Professional summary") skills: dict[str, List[str]] = Field( default_factory=dict, description="Categorized skills: technical, soft, domain, tools" ) experience: List[WorkExperience] = Field(default_factory=list) education: List[dict] = Field(default_factory=list) projects: List[dict] = Field(default_factory=list)
@property def total_years_experience(self) -> float: """Calculate total years of professional experience.""" total_months = sum(exp.duration_months for exp in self.experience) return round(total_months / 12, 1)
@property def all_skills_flat(self) -> List[str]: """Return all skills as flat list.""" return [ skill.lower() for category in self.skills.values() for skill in category ]
class JobRequirement(BaseModel): skill: str = Field(description="Required skill or qualification") is_required: bool = Field(True, description="Must-have vs nice-to-have") importance: int = Field(1, ge=1, le=5, description="Importance 1-5") context: Optional[str] = Field(None, description="How skill is used in role")
class JobDescription(BaseModel): title: str = Field(description="Job title") company: Optional[str] = Field(None, description="Company name") level: Optional[str] = Field(None, description="Seniority level") min_years_experience: Optional[int] = Field(None) location: Optional[str] = Field(None) salary_range: Optional[str] = Field(None) requirements: List[JobRequirement] = Field(default_factory=list) responsibilities: List[str] = Field(default_factory=list) culture_indicators: List[str] = Field(default_factory=list)
class MatchAnalysis(BaseModel): overall_score: int = Field(ge=0, le=100, description="Overall match percentage") skill_match_score: int = Field(ge=0, le=100) experience_match_score: int = Field(ge=0, le=100) semantic_similarity_score: float = Field(ge=0, le=1) matched_skills: List[str] = Field(default_factory=list) missing_skills: List[JobRequirement] = Field(default_factory=list) experience_gaps: List[str] = Field(default_factory=list) strengths: List[str] = Field(default_factory=list) recommendations: List[str] = Field(default_factory=list, min_length=3)What Interviewers Will Ask:
-
“How do you handle resumes with non-standard formats or creative layouts?”
- Expectation: Discussion of extraction limitations, fallback strategies, graceful degradation
-
“What accuracy did you achieve for skill extraction, and how did you measure it?”
- Expectation: Manual evaluation on test set, precision/recall metrics, error analysis
-
“How did you prevent the system from hallucinating requirements that are not in the job description?”
- Expectation: Strict output schema, validation, conservative extraction with low confidence handling
Intermediate Level: Mid-Level Roles
Section titled “Intermediate Level: Mid-Level Roles”These projects demonstrate production-grade implementation skills. Focus on performance optimization, error handling, and deployment concerns.
Project 3: Advanced RAG with Hybrid Search
Section titled “Project 3: Advanced RAG with Hybrid Search”Problem Statement:
Basic RAG systems often fail to retrieve relevant documents because semantic search alone misses exact keyword matches, especially for technical terms, product names, and acronyms. Build a production-grade RAG system that combines dense (semantic) and sparse (keyword) retrieval, includes reranking, handles conversation history, and deploys as a scalable API.
Why This Matters:
This is the standard for production RAG systems. Basic implementations fail in real-world scenarios with diverse document types and query patterns. This project proves you can build systems that work under realistic constraints.
Architecture Diagram:
┌─────────────────────────────────────────────────────────────────┐│ DOCUMENT INGESTION ││ (Async Processing Pipeline) │├─────────────────────────────────────────────────────────────────┤│ ││ Upload API → Validation → Parsing → Chunking → Queue ││ ↓ ││ (Size, type (Schema (Unstructured (Semantic (Redis││ checks) validation) io) split) Stream)││ ││ Worker Pool: ││ ┌─────────────────────────────────────────────────────────┐ ││ │ 1. Generate dense embedding (OpenAI text-embedding-3) │ ││ │ 2. Generate sparse embedding (BM25/SPLADE via sentence) │ ││ │ 3. Store in Pinecone with metadata │ ││ │ 4. Index keywords in Elasticsearch (optional) │ ││ │ 5. Update processing status │ ││ └─────────────────────────────────────────────────────────┘ │└─────────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────────┐│ QUERY PIPELINE ││ (Hybrid Retrieval) │├─────────────────────────────────────────────────────────────────┤│ ││ User Query ││ │ ││ ▼ ││ ┌─────────────────┐ ┌─────────────────────────────────────┐ ││ │ Query Rewriting │───►│ • Expand acronyms │ ││ │ (Optional LLM) │ │ • Add synonyms │ ││ │ │ │ • Clarify ambiguous terms │ ││ └─────────────────┘ └─────────────────────────────────────┘ ││ │ ││ ├────────────────────────┬─────────────────────┐ ││ ▼ ▼ ▼ ││ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ││ │ Dense │ │ Sparse │ │ Keyword │ ││ │ Retrieval │ │ Retrieval │ │ (BM25) │ ││ │ │ │ │ │ │ ││ │ Pinecone │ │ Pinecone │ │ Elasticsearch│ ││ │ (cosine) │ │ (dot prod) │ │ (BM25 score)│ ││ │ Top 20 │ │ Top 20 │ │ Top 20 │ ││ └─────────────┘ └─────────────┘ └─────────────┘ ││ │ │ │ ││ └────────────────────┼────────────────────┘ ││ ▼ ││ ┌─────────────────────┐ ││ │ Fusion & Deduplication ││ │ • RRF (Reciprocal Rank Fusion) ││ │ • Score normalization ││ │ • Duplicate removal ││ │ Top 15 candidates ││ └─────────────────────┘ ││ │ ││ ▼ ││ ┌─────────────────────┐ ││ │ Cross-Encoder │ ││ │ Reranking │ ││ │ │ ││ │ sentence-transformers ││ │ ms-marco-MiniLM-L-6-v2 ││ │ │ ││ │ Score each query-doc pair ││ │ Return top 5 ││ └─────────────────────┘ ││ │ ││ ▼ ││ ┌─────────────────────────────────────────────────────────────┐ ││ │ Context Assembly + Prompt Building │ ││ │ • Combine retrieved chunks │ ││ │ • Add conversation history (last 3 exchanges) │ ││ │ • Format with source citations │ ││ │ • Inject system prompt │ ││ └─────────────────────────────────────────────────────────────┘ ││ │ ││ ▼ ││ ┌─────────────────────────────────────────────────────────────┐ ││ │ LLM Generation │ ││ │ • GPT-4o-mini (default) or GPT-4o (complex queries) │ ││ │ • Streaming response │ ││ │ • Citation injection │ ││ │ • Answer confidence estimation │ ││ └─────────────────────────────────────────────────────────────┘ ││ │ ││ ▼ ││ ┌─────────────────────────────────────────────────────────────┐ ││ │ Response Post-Processing │ ││ │ • Format validation │ ││ │ • Source attribution │ ││ │ • Suggested follow-up questions │ ││ └─────────────────────────────────────────────────────────────┘ │└─────────────────────────────────────────────────────────────────┘Technology Stack:
| Component | Technology | Version | Purpose |
|---|---|---|---|
| API Framework | FastAPI | 0.115+ | Async endpoints |
| Task Queue | Celery + Redis | 5.4+, 7.4+ | Async processing |
| Dense Embeddings | OpenAI text-embedding-3-small | API | Semantic vectors |
| Sparse Embeddings | SPLADE via transformers | 4.46+ | Keyword vectors |
| Vector DB | Pinecone | 5.4+ | Hybrid search |
| Reranker | sentence-transformers cross-encoder | 3.4+ | Result ranking |
| LLM | OpenAI GPT-4o-mini | API | Response generation |
| Monitoring | LangSmith | Latest | Trace and evaluate |
| Deployment | Docker + Docker Compose | 27+ | Containerization |
File Structure:
advanced-rag-system/├── README.md├── pyproject.toml├── docker-compose.yml├── .env.example├── config/│ ├── __init__.py│ ├── settings.py # Pydantic Settings with env vars│ ├── logging.yaml # Structured logging config│ └── prompts/ # Version-controlled prompts│ ├── system_prompt.txt│ ├── query_rewrite.txt│ └── citation_prompt.txt├── src/│ ├── __init__.py│ ├── main.py # FastAPI app│ ├── api/│ │ ├── __init__.py│ │ ├── routes.py # HTTP endpoints│ │ ├── dependencies.py # Injectable dependencies│ │ └── middleware.py # Auth, rate limiting│ ├── core/│ │ ├── __init__.py│ │ ├── exceptions.py│ │ ├── logging.py│ │ └── constants.py│ ├── models/│ │ ├── __init__.py│ │ ├── schemas.py # Pydantic models│ │ └── domain.py # Business entities│ ├── services/│ │ ├── __init__.py│ │ ├── ingestion/│ │ │ ├── __init__.py│ │ │ ├── parser.py # Document parsing│ │ │ ├── chunker.py # Semantic chunking│ │ │ └── worker.py # Celery tasks│ │ ├── retrieval/│ │ │ ├── __init__.py│ │ │ ├── dense.py # Vector search│ │ │ ├── sparse.py # BM25/SPLADE│ │ │ ├── fusion.py # RRF fusion│ │ │ └── reranker.py # Cross-encoder│ │ ├── generation/│ │ │ ├── __init__.py│ │ │ ├── llm.py # LLM client│ │ │ ├── history.py # Conversation memory│ │ │ └── prompts.py # Prompt management│ │ └── evaluation/│ │ ├── __init__.py│ │ └── metrics.py # RAGAS metrics│ └── infrastructure/│ ├── __init__.py│ ├── pinecone_client.py│ ├── redis_client.py│ └── langsmith_client.py├── tests/│ ├── __init__.py│ ├── conftest.py│ ├── unit/│ ├── integration/│ └── evaluation/ # RAG evaluation suite└── scripts/ ├── run_ingestion.py ├── evaluate_rag.py └── benchmark_latency.pyImplementation Milestones:
| Milestone | Duration | Deliverable | Success Criteria |
|---|---|---|---|
| M1: Infrastructure | 3 days | Docker, config, logging | All services start cleanly |
| M2: Ingestion Pipeline | 4 days | Async document processing | 100 docs/min throughput |
| M3: Hybrid Retrieval | 5 days | Dense + sparse + fusion | Better recall than single method |
| M4: Reranking | 3 days | Cross-encoder integration | 15%+ MRR improvement |
| M5: Generation | 3 days | Streaming, history, citations | Sub-2s time-to-first-token |
| M6: Evaluation | 3 days | RAGAS metrics pipeline | Quantified quality scores |
| M7: Deployment | 2 days | Production Docker setup | Health checks, monitoring |
Testing Strategy:
import pytestfrom dataclasses import dataclassfrom typing import Listfrom src.services.retrieval.fusion import RRFusionfrom src.services.retrieval.dense import DenseRetrieverfrom src.services.retrieval.sparse import SparseRetriever
@dataclassclass RetrievalTestCase: query: str expected_doc_ids: List[str] description: str
RETRIEVAL_TEST_CASES = [ RetrievalTestCase( query="What is the company's vacation policy?", expected_doc_ids=["hr_handbook_2024.pdf"], description="Basic semantic retrieval" ), RetrievalTestCase( query="API rate limits for v2 endpoints", expected_doc_ids=["api_docs_v2.md"], description="Keyword-heavy technical query" ), RetrievalTestCase( query="How do I reset my 2FA?", expected_doc_ids=["security_faq.md", "account_recovery.md"], description="Multi-document answer" ),]
class TestRetrievalQuality: @pytest.fixture async def retrievers(self): dense = DenseRetriever() sparse = SparseRetriever() fusion = RRFusion(k=60) return dense, sparse, fusion
@pytest.mark.asyncio @pytest.mark.parametrize("test_case", RETRIEVAL_TEST_CASES) async def test_retrieval_recall(self, retrievers, test_case): """Test that expected documents are in top-k results.""" dense, sparse, fusion = retrievers
# Retrieve using both methods dense_results = await dense.search(test_case.query, top_k=20) sparse_results = await sparse.search(test_case.query, top_k=20)
# Fuse results fused = fusion.combine([dense_results, sparse_results], top_k=10) retrieved_ids = [r.document_id for r in fused]
# Check expected IDs are present for expected_id in test_case.expected_doc_ids: assert expected_id in retrieved_ids, \ f"Expected {expected_id} for query: {test_case.query}"
@pytest.mark.asyncio async def test_hybrid_beats_dense_alone(self, retrievers): """Hybrid retrieval should outperform dense for keyword-heavy queries.""" dense, sparse, fusion = retrievers
query = "HTTP 429 error troubleshooting"
dense_results = await dense.search(query, top_k=5) sparse_results = await sparse.search(query, top_k=5) fused = fusion.combine([dense_results, sparse_results], top_k=5)
# Check if relevant doc is in results relevant_doc = "api_error_codes.md"
dense_has = any(r.document_id == relevant_doc for r in dense_results) fused_has = any(r.document_id == relevant_doc for r in fused)
assert fused_has or not dense_has, \ "Hybrid should find doc when dense doesn't"What Interviewers Will Ask:
-
“Why did you choose RRF for fusion instead of linear combination?”
- Expectation: Discussion of score normalization challenges, why rank-based fusion is more robust across different scoring scales
-
“How do you handle the latency increase from reranking?”
- Expectation: Batch processing, async patterns, caching strategies, trade-offs between quality and speed
-
“What retrieval metrics did you track, and what were your targets?”
- Expectation: MRR, NDCG, recall@k, precision@k, human evaluation correlation
-
“How would you scale this to handle 1000 queries per second?”
- Expectation: Load balancing, caching, read replicas, embedding service scaling, CDN for documents
Project 4: Autonomous Research Agent
Section titled “Project 4: Autonomous Research Agent”Problem Statement:
Knowledge workers spend hours researching topics across multiple sources, synthesizing information, and writing summaries. Build an autonomous agent system that researches topics end-to-end: searches the web, reads and extracts key information from sources, synthesizes findings across multiple documents, and produces structured reports with citations.
Why This Matters:
Agent systems represent the next major evolution in GenAI applications. This project demonstrates understanding of multi-agent architecture, tool use, state management, and complex workflow orchestration. These are the skills needed for the most cutting-edge GenAI roles.
Architecture Diagram:
┌─────────────────────────────────────────────────────────────────┐│ RESEARCH ORCHESTRATOR ││ (LangGraph State Machine) │├─────────────────────────────────────────────────────────────────┤│ ││ ┌─────────────────────────────────────────────────────────┐ ││ │ Research State │ ││ │ • query: str │ ││ │ • sub_queries: List[str] │ ││ │ • sources: List[Source] │ ││ │ • findings: List[Finding] │ ││ │ • synthesis: Optional[Synthesis] │ ││ │ • report: Optional[Report] │ ││ │ • iteration_count: int │ ││ │ • errors: List[Error] │ ││ └─────────────────────────────────────────────────────────┘ ││ │ ││ ▼ ││ ┌─────────────────────────────────────────────────────────┐ ││ │ State Graph │ ││ │ │ ││ │ START → Plan → Search → Extract → Evaluate ──┐ │ ││ │ ↑ │ │ ││ │ └────────── Need More Info ◄───────┘ │ ││ │ │ │ ││ │ ▼ │ ││ │ Synthesize │ ││ │ │ │ ││ │ ▼ │ ││ │ Write Report → END │ ││ │ │ ││ └─────────────────────────────────────────────────────────┘ ││ │ ││ ┌──────────────────┼──────────────────┐ ││ ▼ ▼ ▼ ││ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ││ │ Planner │ │ Searcher │ │ Extractor │ ││ │ Agent │ │ Agent │ │ Agent │ ││ ├─────────────┤ ├─────────────┤ ├─────────────┤ ││ │ Break down │ │ • SerpAPI │ │ • URL fetch │ ││ │ complex │ │ • arXiv │ │ • Readability│ ││ │ queries │ │ • Wikipedia │ │ • LLM extract│ ││ │ into sub- │ │ • News API │ │ • Key facts │ ││ │ queries │ │ │ │ • Quotes │ ││ └─────────────┘ └─────────────┘ └─────────────┘ ││ │ ││ ▼ ││ ┌─────────────┐ ││ │ Synthesis │ ││ │ Agent │ ││ ├─────────────┤ ││ │ Resolve │ ││ │ conflicts │ ││ │ Identify │ ││ │ gaps │ ││ │ Build │ ││ │ narrative │ ││ └─────────────┘ │└─────────────────────────────────────────────────────────────────┘Technology Stack:
| Component | Technology | Version | Purpose |
|---|---|---|---|
| Orchestration | LangGraph | 0.2+ | Agent workflow state machine |
| LLM | OpenAI GPT-4o / Claude 3.5 Sonnet | API | Agent reasoning |
| Search | SerpAPI + arXiv API | Latest | Web and academic search |
| Web Scraping | playwright + readability-lxml | 1.49+, 0.9+ | Content extraction |
| State Store | Redis | 7.4+ | Checkpoint persistence |
| Output | Pydantic | 2.10+ | Structured reports |
| Monitoring | LangSmith | Latest | Trace agent decisions |
Implementation Milestones:
| Milestone | Duration | Deliverable | Success Criteria |
|---|---|---|---|
| M1: State Design | 3 days | LangGraph state machine | All states transition correctly |
| M2: Planner Agent | 3 days | Query decomposition | Complex queries broken into sub-queries |
| M3: Search Agent | 4 days | Multi-source search | 5+ sources per query |
| M4: Extractor Agent | 4 days | Content extraction | 80%+ extraction success rate |
| M5: Synthesis Agent | 3 days | Conflict resolution | Coherent synthesis from multiple sources |
| M6: Report Writer | 3 days | Formatted output | Structured report with citations |
| M7: Evaluation | 4 days | Quality metrics | Human-evaluated accuracy scores |
Key Code Pattern - LangGraph State Machine:
from typing import TypedDict, List, Annotatedfrom langgraph.graph import StateGraph, ENDfrom langgraph.checkpoint import RedisCheckpointimport operator
class Source(TypedDict): url: str title: str content: str relevance_score: float accessed_at: str
class Finding(TypedDict): claim: str evidence: str source_url: str confidence: float
class ResearchState(TypedDict): query: str sub_queries: List[str] sources: Annotated[List[Source], operator.add] findings: Annotated[List[Finding], operator.add] iteration: int max_iterations: int status: str # "planning", "searching", "extracting", "synthesizing", "complete" error: str
# Node functionsasync def planner_node(state: ResearchState) -> dict: """Break down complex query into sub-queries.""" if state["iteration"] >= state["max_iterations"]: return {"status": "complete"}
planner = PlannerAgent() sub_queries = await planner.decompose(state["query"])
return { "sub_queries": sub_queries, "status": "searching", "iteration": state["iteration"] + 1 }
async def search_node(state: ResearchState) -> dict: """Search for sources for each sub-query.""" searcher = SearchAgent() all_sources = []
for sub_query in state["sub_queries"]: sources = await searcher.search(sub_query, max_results=5) all_sources.extend(sources)
# Deduplicate by URL seen = set() unique_sources = [] for s in all_sources: if s["url"] not in seen: seen.add(s["url"]) unique_sources.append(s)
return { "sources": unique_sources, "status": "extracting" }
async def extract_node(state: ResearchState) -> dict: """Extract key information from sources.""" extractor = ExtractionAgent() all_findings = []
for source in state["sources"][:10]: # Limit to top 10 try: findings = await extractor.extract( content=source["content"], query=state["query"] ) for f in findings: f["source_url"] = source["url"] all_findings.extend(findings) except Exception as e: # Log but continue continue
return { "findings": all_findings, "status": "evaluating" }
def should_continue(state: ResearchState) -> str: """Decide whether to continue research or synthesize.""" if state["status"] == "complete": return "synthesize" if len(state["findings"]) < 5 and state["iteration"] < state["max_iterations"]: return "plan" # Need more information return "synthesize"
# Build the graphworkflow = StateGraph(ResearchState)
# Add nodesworkflow.add_node("planner", planner_node)workflow.add_node("search", search_node)workflow.add_node("extract", extract_node)workflow.add_node("synthesize", synthesis_node)workflow.add_node("write_report", report_node)
# Add edgesworkflow.set_entry_point("planner")workflow.add_edge("planner", "search")workflow.add_edge("search", "extract")workflow.add_conditional_edges( "extract", should_continue, { "plan": "planner", "synthesize": "synthesize" })workflow.add_edge("synthesize", "write_report")workflow.add_edge("write_report", END)
# Compile with checkpointingcheckpoint = RedisCheckpoint(redis_url="redis://localhost:6379")research_agent = workflow.compile(checkpointer=checkpoint)What Interviewers Will Ask:
-
“How do you prevent the agent from getting stuck in infinite loops?”
- Expectation: Max iteration limits, state machine constraints, convergence detection
-
“What happens when a search returns paywalled content?”
- Expectation: Fallback strategies, content extraction limitations, transparent handling
-
“How do you evaluate the quality of the final report?”
- Expectation: Human evaluation framework, factuality checking, citation accuracy metrics
Project 5: Code Review Assistant
Section titled “Project 5: Code Review Assistant”Problem Statement:
Code reviews are bottlenecks in software development teams. Reviewers miss issues due to time constraints or lack of domain knowledge. Build a GitHub bot that automatically analyzes pull requests, identifies security vulnerabilities, performance issues, and style violations, and suggests specific improvements with explanations.
Why This Matters:
Developer productivity tools are high-value GenAI applications. This project demonstrates integration with developer workflows, tool-augmented agents, and structured output generation. It shows you understand the software development lifecycle.
Architecture Diagram:
┌─────────────────────────────────────────────────────────────────┐│ GITHUB INTEGRATION │├─────────────────────────────────────────────────────────────────┤│ ││ GitHub Webhook → Event Processor → Task Queue → Workers ││ (PR opened, (Filter, (Celery + (Async ││ commit pushed) validate) Redis) processing)││ │└─────────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────────┐│ ANALYSIS PIPELINE │├─────────────────────────────────────────────────────────────────┤│ ││ ┌───────────────────────────────────────────────────────────┐ ││ │ Diff Retrieval │ ││ │ • Fetch PR diff via GitHub API │ ││ │ • Parse file changes with context │ ││ │ • Filter relevant files (exclude vendor, generated) │ ││ └───────────────────────────────────────────────────────────┘ ││ │ ││ ┌───────────────────┼───────────────────┐ ││ ▼ ▼ ▼ ││ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ││ │ Security │ │ Performance │ │ Style │ ││ │ Agent │ │ Agent │ │ Agent │ ││ ├─────────────┤ ├─────────────┤ ├─────────────┤ ││ │ • SQL inj │ │ • N+1 query │ │ • PEP8 │ ││ │ • XSS risk │ │ • Memory │ │ • Type hints│ ││ │ • Secrets │ │ • Complexity│ │ • Naming │ ││ │ • Auth bugs │ │ • Async │ │ • Docs │ ││ └─────────────┘ └─────────────┘ └─────────────┘ ││ │ │ │ ││ └───────────────────┼───────────────────┘ ││ ▼ ││ ┌───────────────────────────────────────────────────────────┐ ││ │ Result Aggregation │ ││ │ • Deduplicate overlapping issues │ ││ │ • Score severity (critical, warning, suggestion) │ ││ │ • Sort by importance and file location │ ││ └───────────────────────────────────────────────────────────┘ ││ │ ││ ▼ ││ ┌───────────────────────────────────────────────────────────┐ ││ │ Review Comment Generation │ ││ │ • Line-specific comments with context │ ││ │ • Summary comment with statistics │ ││ │ • Suggested code changes │ ││ └───────────────────────────────────────────────────────────┘ ││ │ ││ ▼ ││ ┌───────────────────────────────────────────────────────────┐ ││ │ GitHub PR Comment Posting │ ││ │ • Create review with comments │ ││ │ • Request changes or approve │ ││ │ • Update existing review on new commits │ ││ └───────────────────────────────────────────────────────────┘ │└─────────────────────────────────────────────────────────────────┘Technology Stack:
| Component | Technology | Version | Purpose |
|---|---|---|---|
| GitHub Integration | PyGithub | 2.5+ | API client |
| Webhook Handler | FastAPI | 0.115+ | Event reception |
| Task Queue | Celery + Redis | 5.4+, 7.4+ | Async processing |
| Static Analysis | bandit, pylint | 1.7+, 3.3+ | Security/lint checks |
| LLM | OpenAI GPT-4o-mini | API | Review generation |
| Database | PostgreSQL | 16+ | PR history, caching |
| Deployment | Docker | 27+ | Containerization |
What Interviewers Will Ask:
-
“How do you handle false positives from the security scanner?”
- Expectation: Confidence scoring, suppressions, user feedback loop
-
“What prevents the bot from suggesting changes that break existing tests?”
- Expectation: CI integration, test awareness, conservative suggestions
-
“How do you ensure the bot does not overwhelm developers with too many comments?”
- Expectation: Batching, severity filtering, summary-first approach
Advanced Level: Senior Roles
Section titled “Advanced Level: Senior Roles”These projects demonstrate architectural expertise, scale thinking, and the ability to lead complex technical initiatives.
Project 6: Domain-Specific Fine-Tuned Model
Section titled “Project 6: Domain-Specific Fine-Tuned Model”Problem Statement:
General-purpose LLMs lack deep expertise in specialized domains like legal, medical, or financial analysis. They struggle with domain-specific terminology, regulatory nuances, and format requirements. Fine-tune an open-source model (Llama 3.3, Mistral) for a specific domain, creating a model that outperforms GPT-4 on domain tasks while being deployable on cost-effective infrastructure.
Why This Matters:
Fine-tuning specialists command premium salaries. This project demonstrates advanced ML skills, dataset engineering, training infrastructure, and model serving. It proves you can go beyond API integration to actual model customization.
Architecture Diagram:
┌─────────────────────────────────────────────────────────────────┐│ DATA PIPELINE │├─────────────────────────────────────────────────────────────────┤│ ││ Raw Sources → Curation → Formatting → Tokenization → Dataset ││ ↓ ││ (Legal docs, (Quality (Instruction (Llama 3.3 (Hugging││ case law, filtering, format with tokenizer, Face ││ textbooks) dedup) reasoning) truncation) datasets)││ ││ Example Format: ││ { ││ "instruction": "Analyze this contract clause...", ││ "input": "Clause text...", ││ "output": "Analysis with citations...", ││ "reasoning": "Step-by-step legal reasoning..." ││ } ││ │└─────────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────────┐│ TRAINING INFRASTRUCTURE │├─────────────────────────────────────────────────────────────────┤│ ││ ┌───────────────────────────────────────────────────────────┐ ││ │ Training Configuration │ ││ │ • Base model: meta-llama/Llama-3.3-8B-Instruct │ ││ │ • Method: QLoRA (4-bit quantization) │ ││ │ • LoRA rank: 64, alpha: 128 │ ││ │ • Target modules: q_proj, k_proj, v_proj, o_proj │ ││ │ • Learning rate: 2e-4 with cosine decay │ ││ │ • Batch size: 64 (accumulated) │ ││ │ • Epochs: 3 │ ││ │ • Max sequence: 4096 tokens │ ││ └───────────────────────────────────────────────────────────┘ ││ │ ││ ▼ ││ ┌───────────────────────────────────────────────────────────┐ ││ │ Training Orchestration (Axolotl/TRL) │ ││ │ │ ││ │ ┌─────────────┐ ┌─────────────┐ ┌──────────┐ │ ││ │ │ Data │ ───► │ Model │ ───► │ Training│ │ ││ │ │ Loader │ │ Prep │ │ Loop │ │ ││ │ │ (streaming)│ │ (QLoRA) │ │ │ │ ││ │ └─────────────┘ └─────────────┘ └────┬─────┘ │ ││ │ │ │ ││ │ ┌─────────────┐ ┌─────────────┐ │ │ ││ │ │ Checkpoint │ ◄────│ Validation │ ◄─────────┘ │ ││ │ │ (HF Hub) │ │ (every N │ │ ││ │ │ │ │ steps) │ │ ││ │ └─────────────┘ └─────────────┘ │ ││ └───────────────────────────────────────────────────────────┘ ││ │ ││ ▼ ││ ┌───────────────────────────────────────────────────────────┐ ││ │ Experiment Tracking (Weights & Biases) │ ││ │ • Training loss curves │ ││ │ • Learning rate schedule │ ││ │ • GPU utilization │ ││ │ • Validation metrics │ ││ │ • Sample generations │ ││ └───────────────────────────────────────────────────────────┘ │└─────────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────────┐│ EVALUATION FRAMEWORK │├─────────────────────────────────────────────────────────────────┤│ ││ ┌──────────────┐ ┌──────────────┐ ┌──────────────────────┐ ││ │ Automated │ │ Human │ │ Benchmark │ ││ │ Metrics │ │ Evaluation │ │ Comparison │ ││ ├──────────────┤ ├──────────────┤ ├──────────────────────┤ ││ │ • Perplexity │ │ • Expert │ │ • GPT-4 baseline │ ││ │ • BLEU/ROUGE │ │ review of │ │ • Domain-specific │ ││ │ • Factuality │ │ samples │ │ test sets │ ││ │ • Safety │ │ • Rubric │ │ • Cost/perf tradeoff │ ││ └──────────────┘ └──────────────┘ └──────────────────────┘ │└─────────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────────┐│ MODEL SERVING │├─────────────────────────────────────────────────────────────────┤│ ││ ┌───────────────────────────────────────────────────────────┐ ││ │ Deployment Options │ ││ │ │ ││ │ Option A: vLLM (Recommended) │ ││ │ • Tensor parallelism for multi-GPU │ ││ │ • PagedAttention for throughput │ ││ │ • OpenAI-compatible API │ ││ │ • ~3,000 tok/sec on A100 │ ││ │ │ ││ │ Option B: Text Generation Inference (TGI) │ ││ │ • Hugging Face native │ ││ │ • Good for Hub integration │ ││ │ │ ││ │ Option C: llama.cpp (CPU/Edge) │ ││ │ • Quantized GGUF format │ ││ │ • CPU inference │ ││ │ • Edge deployment │ ││ └───────────────────────────────────────────────────────────┘ │└─────────────────────────────────────────────────────────────────┘Technology Stack:
| Component | Technology | Version | Purpose |
|---|---|---|---|
| Base Model | Llama 3.3 8B Instruct | Latest | Foundation model |
| Training | Axolotl or TRL | 0.5+ | Fine-tuning framework |
| PEFT | peft | 0.14+ | LoRA/QLoRA implementation |
| Quantization | bitsandbytes | 0.45+ | 4-bit quantization |
| Dataset | Hugging Face datasets | 3.2+ | Data processing |
| Tracking | Weights & Biases | 0.19+ | Experiment logging |
| Serving | vLLM | 0.6+ | High-throughput inference |
| Hardware | A100 40GB or H100 | N/A | Training (cloud rental) |
Implementation Milestones:
| Milestone | Duration | Deliverable | Success Criteria |
|---|---|---|---|
| M1: Dataset Curation | 7 days | 10K+ high-quality examples | Expert-validated samples |
| M2: Training Setup | 4 days | Axolotl config, infra | Successful dry-run |
| M3: Fine-Tuning | 5 days | Trained adapter weights | Loss convergence |
| M4: Evaluation | 5 days | Benchmark results | Beats GPT-4 on domain tasks |
| M5: Deployment | 4 days | vLLM serving endpoint | Sub-100ms TTFT |
| M6: Documentation | 3 days | Training report, model card | Reproducible training |
What Interviewers Will Ask:
-
“Why did you choose QLoRA over full fine-tuning?”
- Expectation: Cost trade-offs, memory requirements, catastrophic forgetting concerns
-
“How did you prevent overfitting on your training data?”
- Expectation: Validation set design, early stopping, dropout, weight decay discussion
-
“What was your cost per training run, and how did you optimize it?”
- Expectation: GPU rental costs, spot instances, gradient accumulation strategies
-
“How do you handle model updates when new training data becomes available?”
- Expectation: Continuous training strategies, version management, A/B testing
Project 7: Enterprise Knowledge Base
Section titled “Project 7: Enterprise Knowledge Base”Problem Statement:
Large organizations need to make institutional knowledge accessible across departments while maintaining strict access controls. Build a multi-tenant RAG system capable of indexing millions of documents across diverse formats, with real-time updates, granular permissions, comprehensive monitoring, and cost tracking.
Why This Matters:
Enterprise scale is where senior engineers differentiate. This project demonstrates distributed systems design, security architecture, and operational excellence. These are the challenges faced by companies like Glean, Microsoft, and Amazon.
Architecture Diagram:
┌─────────────────────────────────────────────────────────────────┐│ CLIENT LAYER ││ (Web App, Mobile, Slack Bot, API Clients) │└─────────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────────┐│ API GATEWAY ││ (Kong/AWS API Gateway - Auth, Rate Limit, Routing) │└─────────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────────┐│ APPLICATION SERVICES │├─────────────────────────────────────────────────────────────────┤│ ││ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ ││ │ Query Service │ │ Ingestion │ │ Admin Service │ ││ │ (FastAPI) │ │ Service │ │ (Management) │ ││ │ │ │ (FastAPI) │ │ │ ││ │ • RAG pipeline │ │ • Upload API │ │ • User mgmt │ ││ │ • Auth check │ │ • Validation │ │ • Permissions │ ││ │ • Response │ │ • Queue job │ │ • Analytics │ ││ └────────┬────────┘ └────────┬────────┘ └─────────────────┘ ││ │ │ ││ │ ▼ ││ │ ┌─────────────────────┐ ││ │ │ Ingestion Pipeline │ ││ │ │ (Celery Workers) │ ││ │ ├─────────────────────┤ ││ │ │ • Document parsing │ ││ │ │ • OCR (if needed) │ ││ │ │ • Chunking │ ││ │ │ • Embedding │ ││ │ │ • Vector storage │ ││ │ └─────────────────────┘ ││ │ ││ ▼ ││ ┌─────────────────────────────────────────────────────────┐ ││ │ RAG Pipeline (per-tenant) │ ││ │ │ ││ │ Query → Auth/ACL → Hybrid Retrieval → Rerank → LLM │ ││ │ ↓ ↓ │ ││ │ (Permission (Tenant-scoped │ ││ │ filtering) vector search) │ ││ └─────────────────────────────────────────────────────────┘ │└─────────────────────────────────────────────────────────────────┘ │ ┌───────────────────┼───────────────────┐ ▼ ▼ ▼┌───────────────┐ ┌───────────────┐ ┌───────────────┐│ VECTOR DB │ │ CACHE LAYER │ │ SEARCH ││ (Milvus) │ │ (Redis) │ │ (Elasticsearch│├───────────────┤ ├───────────────┤ ├───────────────┤│ • Multi-tenant│ │ • Query cache │ │ • Full-text ││ collections │ │ • Rate limit │ │ • Faceted ││ • Partition │ │ • Session │ │ • Filtering ││ by org │ │ store │ │ ││ • Role-based │ │ • Pub/sub │ │ ││ access │ │ for sync │ │ │└───────────────┘ └───────────────┘ └───────────────┘ │ │ │ └───────────────────┼───────────────────┘ ▼┌─────────────────────────────────────────────────────────────────┐│ DATA & MESSAGING LAYER │├─────────────────────────────────────────────────────────────────┤│ ││ ┌──────────────┐ ┌──────────────┐ ┌──────────────────────┐ ││ │ PostgreSQL │ │ Kafka │ │ S3 / GCS │ ││ │ (Metadata, │ │ (Event │ │ (Document │ ││ │ users, │ │ streaming) │ │ storage) │ ││ │ permissions)│ │ │ │ │ ││ └──────────────┘ └──────────────┘ └──────────────────────┘ │└─────────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────────┐│ OBSERVABILITY LAYER │├─────────────────────────────────────────────────────────────────┤│ ││ ┌──────────────┐ ┌──────────────┐ ┌──────────────────────┐ ││ │ Prometheus │ │ Grafana │ │ Custom Dashboards │ ││ │ (Metrics) │ │ (Dashboards) │ │ • Query volume │ ││ │ │ │ │ │ • Cost per tenant │ ││ │ • Latency │ │ • Latency │ │ • Quality scores │ ││ │ • Throughput │ │ • Error rate │ │ • Usage patterns │ ││ │ • Errors │ │ • Cost │ │ │ ││ └──────────────┘ └──────────────┘ └──────────────────────┘ │└─────────────────────────────────────────────────────────────────┘Technology Stack:
| Component | Technology | Version | Purpose |
|---|---|---|---|
| API | FastAPI | 0.115+ | Application layer |
| Vector DB | Milvus/Zilliz | 2.5+ | Scalable vector search |
| Cache | Redis Cluster | 7.4+ | Performance layer |
| Message Queue | Kafka | 3.8+ | Event streaming |
| Database | PostgreSQL | 16+ | Transactional data |
| Storage | S3/GCS | N/A | Document blob storage |
| Auth | OAuth2 + JWT | N/A | Authentication |
| Monitoring | Prometheus + Grafana | Latest | Observability |
| Cost Tracking | Custom + CloudWatch | N/A | Usage billing |
Implementation Milestones:
| Milestone | Duration | Deliverable | Success Criteria |
|---|---|---|---|
| M1: Multi-tenant Design | 5 days | Schema, isolation strategy | Security review pass |
| M2: Core Services | 7 days | Query, ingestion, admin APIs | Functional endpoints |
| M3: Vector Pipeline | 6 days | Milvus integration | 10K docs/sec ingestion |
| M4: Auth & ACL | 5 days | Permission system | Row-level security works |
| M5: Monitoring | 4 days | Dashboards, alerts | 99.9% uptime visibility |
| M6: Load Testing | 5 days | Performance validation | 1000 QPS sustained |
| M7: Documentation | 4 days | Runbooks, architecture docs | Onboarding guide |
What Interviewers Will Ask:
-
“How do you ensure tenant data isolation in the vector database?”
- Expectation: Namespace separation, collection per tenant, or metadata filtering with strict validation
-
“What is your strategy for handling document updates in real-time?”
- Expectation: CDC patterns, event streaming, incremental indexing
-
“How do you attribute costs to individual tenants for billing?”
- Expectation: Token counting per tenant, embedding costs, storage metrics
-
“Walk me through your disaster recovery strategy.”
- Expectation: Backups, replication, RPO/RTO targets, runbook procedures
Project 8: Conversational Data Analyst
Section titled “Project 8: Conversational Data Analyst”Problem Statement:
Business analysts spend hours writing SQL queries and creating reports. Non-technical stakeholders cannot access data insights without going through analysts. Build a system that lets users ask questions about databases in natural language, generates safe SQL, executes with guardrails, visualizes results, and explains findings in business terms.
Why This Matters:
Text-to-SQL is a major enterprise GenAI use case. This project demonstrates complex multi-component system design, safety engineering, and the ability to bridge technical and non-technical domains. It shows full-stack AI system architecture.
Architecture Diagram:
┌─────────────────────────────────────────────────────────────────┐│ USER INTERFACE ││ ┌───────────────────────────────────────────────────────────┐ ││ │ Conversational UI │ ││ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────────┐ │ ││ │ │ Chat Panel │ │ Data Viz │ │ Schema Explorer │ │ ││ │ │ │ │ (Charts, │ │ (Tables, │ │ ││ │ │ • Natural │ │ Tables) │ │ Columns, │ │ ││ │ │ language │ │ │ │ Relationships) │ │ ││ │ │ • Follow-up │ │ • Auto- │ │ │ │ ││ │ │ questions │ │ generated │ │ • ER diagram │ │ ││ │ │ • Clarify │ │ • Drill- │ │ • Column stats │ │ ││ │ │ ambiguous │ │ down │ │ • Sample data │ │ ││ │ │ queries │ │ │ │ │ │ ││ │ └─────────────┘ └─────────────┘ └─────────────────┘ │ ││ └───────────────────────────────────────────────────────────┘ │└─────────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────────┐│ TEXT-TO-SQL PIPELINE │├─────────────────────────────────────────────────────────────────┤│ ││ ┌───────────────────────────────────────────────────────────┐ ││ │ Query Understanding │ ││ │ │ ││ │ User Query → Intent Classifier → Entity Extractor │ ││ │ ↓ ↓ │ ││ │ (SELECT, AGGREGATE, (Dates, │ ││ │ EXPLAIN, COMPARE) Metrics, Filters) │ ││ └───────────────────────────────────────────────────────────┘ ││ │ ││ ▼ ││ ┌───────────────────────────────────────────────────────────┐ ││ │ Schema Context Retrieval │ ││ │ │ ││ │ • Semantic search over table/column descriptions │ ││ │ • Retrieve relevant table schemas │ ││ │ • Include sample values for categorical columns │ ││ │ • Add business metric definitions │ ││ │ │ ││ │ Retrieved Context: │ ││ │ Tables: orders, customers, products │ ││ │ Metrics: revenue (sum(order_total)), active_users │ ││ │ Time range: last 30 days │ ││ └───────────────────────────────────────────────────────────┘ ││ │ ││ ▼ ││ ┌───────────────────────────────────────────────────────────┐ ││ │ SQL Generation + Validation │ ││ │ │ ││ │ LLM Prompt: │ ││ │ • System: You are a SQL expert... │ ││ │ • Schema: CREATE TABLE orders... │ ││ │ • Examples: Few-shot examples of similar queries │ ││ │ • User: "What were top products by revenue last month?" │ ││ │ │ ││ │ Generated SQL → Syntax Validator → Safety Checker │ ││ │ ↓ ↓ │ ││ │ (SQL parser) (Query allowlist, │ ││ │ Table permissions) │ ││ └───────────────────────────────────────────────────────────┘ ││ │ ││ ▼ ││ ┌───────────────────────────────────────────────────────────┐ ││ │ Execution + Error Handling │ ││ │ │ ││ │ Safe Execution: │ ││ │ • Read-only connection (no INSERT/UPDATE/DELETE) │ ││ │ • Query timeout (30 seconds) │ ││ │ • Row limit (1000 results) │ ││ │ • Query plan analysis (reject expensive queries) │ ││ │ │ ││ │ Error Recovery: │ ││ │ • Syntax error → Regenerate with feedback │ ││ │ • No results → Suggest alternative query │ ││ │ • Timeout → Suggest aggregation/filtering │ ││ └───────────────────────────────────────────────────────────┘ ││ │ ││ ▼ ││ ┌───────────────────────────────────────────────────────────┐ ││ │ Result Processing │ ││ │ │ ││ │ • Auto-detect chart type (bar, line, pie, table) │ ││ │ • Generate natural language summary │ ││ │ • Suggest follow-up questions │ ││ │ • Export options (CSV, PNG, PDF) │ ││ └───────────────────────────────────────────────────────────┘ │└─────────────────────────────────────────────────────────────────┘Technology Stack:
| Component | Technology | Version | Purpose |
|---|---|---|---|
| UI | React + TypeScript | 18+ | Frontend |
| Visualization | Apache ECharts | 5.5+ | Charts |
| API | FastAPI | 0.115+ | Backend |
| LLM | Claude 3.5 Sonnet / GPT-4o | API | SQL generation |
| Database | PostgreSQL | 16+ | Data warehouse |
| Schema Cache | Redis | 7.4+ | Metadata caching |
| Security | Query allowlist, read-only | N/A | Safety layer |
Implementation Milestones:
| Milestone | Duration | Deliverable | Success Criteria |
|---|---|---|---|
| M1: Schema Introspection | 4 days | Auto-schema discovery | Works on any Postgres DB |
| M2: Text-to-SQL Engine | 7 days | SQL generation pipeline | 80%+ accuracy on test set |
| M3: Safety Layer | 4 days | Query validation | No unauthorized writes |
| M4: Visualization | 5 days | Auto-chart generation | Appropriate chart types |
| M5: Conversation | 4 days | Multi-turn handling | Contextual follow-ups |
| M6: Evaluation | 4 days | Accuracy benchmark | Spider or custom test set |
What Interviewers Will Ask:
-
“How do you prevent SQL injection when generating queries with LLMs?”
- Expectation: Parameterized queries, query allowlists, read-only connections, input sanitization
-
“What is your strategy for handling ambiguous questions?”
- Expectation: Clarification prompts, confidence scoring, suggested interpretations
-
“How do you evaluate the accuracy of generated SQL?”
- Expectation: Execution-based evaluation, result comparison, manual annotation
-
“What happens when the database schema changes?”
- Expectation: Schema versioning, caching invalidation, re-indexing strategies
7. Trade-offs, Limitations, and Failure Modes
Section titled “7. Trade-offs, Limitations, and Failure Modes”Understanding common portfolio mistakes is as important as knowing what to build. Here are the patterns that distinguish amateur projects from professional ones.
Common Portfolio Mistakes:
| Mistake | Why It Hurts | How to Avoid |
|---|---|---|
| No error handling | Production systems fail constantly. Code that assumes success shows inexperience. | Implement try/except at all boundaries, circuit breakers for external APIs |
| Missing tests | Untested code is broken code. Interviewers will ask about your testing strategy. | Aim for 70%+ coverage, include integration tests |
| No deployment path | ”Works on my machine” projects are tutorials, not portfolio pieces. | Include Dockerfile, docker-compose, deployment instructions |
| Undocumented trade-offs | Every decision has trade-offs. Not acknowledging them shows shallow thinking. | Include ADRs (Architecture Decision Records) in your docs |
| Over-engineering | Complex solutions to simple problems waste resources and confuse reviewers. | Start simple, add complexity only with justification |
| No monitoring | You cannot improve what you do not measure. | Add basic logging, latency tracking, error rates |
| Hardcoded secrets | Exposed API keys in GitHub are an immediate rejection signal. | Use environment variables, include .env.example |
| No data versioning | ML systems without data versioning are not reproducible. | Use DVC or document dataset versions |
Failure Modes to Address:
-
LLM Hallucinations: Always validate outputs. Implement confidence scoring. Have fallback responses.
-
Rate Limiting: External APIs will throttle you. Implement exponential backoff, request queuing, and graceful degradation.
-
Context Window Overflow: Large documents exceed token limits. Implement chunking strategies and intelligent context selection.
-
Embedding Drift: As you update embedding models, vector spaces shift. Plan for re-indexing strategies.
-
Cold Start: Systems with no data provide poor initial experiences. Plan for bootstrap content or onboarding flows.
8. Interview Perspective
Section titled “8. Interview Perspective”Your projects will dominate technical interviews. Prepare to discuss them at multiple depths.
The Project Discussion Framework:
Interviewers typically probe through three layers:
| Layer | Depth | Example Questions |
|---|---|---|
| What | Surface | ”What does this project do?” “What technologies did you use?” |
| How | Implementation | ”How did you handle X?” “Why did you choose Y over Z?” |
| Why | Architecture | ”Why this architecture?” “What would you do differently at 10x scale?” |
Prepare These Stories:
For each project, prepare a 2-minute overview, a 5-minute deep dive, and a 10-minute technical discussion. Practice the STAR method (Situation, Task, Action, Result) for challenges you overcame.
Common Deep-Dive Questions:
-
“Tell me about a bug you encountered and how you debugged it.”
- What they want: Debugging methodology, systematic thinking, persistence
- Good answer: Trace through observation, hypothesis, experiment, resolution
-
“What was the hardest technical decision you made?”
- What they want: Trade-off analysis, decision framework, learning from outcomes
- Good answer: Options considered, criteria for decision, outcome assessment
-
“How would this system handle 100x more load?”
- What they want: Scale thinking, bottleneck identification, architectural evolution
- Good answer: Specific components that would break, scaling strategies
-
“What would you do differently if you started over?”
- What they want: Self-reflection, learning from experience, architectural vision
- Good answer: Honest assessment of technical debt, better approaches learned
Portfolio Presentation Tips:
- Lead with the problem, not the technology. Business value matters more than tech stack.
- Quantify results where possible. “Reduced query latency by 40%” beats “implemented caching.”
- Acknowledge limitations. Nothing is perfect. Showing awareness of weaknesses demonstrates maturity.
- Have a live demo ready. Deployed projects make a stronger impression than localhost screenshots.
9. Production Perspective
Section titled “9. Production Perspective”What separates toy projects from production-ready systems is operational thinking. As you build, ask these questions:
The Production Readiness Checklist:
| Category | Questions to Answer |
|---|---|
| Reliability | What happens when the LLM is down? How do you handle timeouts? |
| Scalability | What is your throughput bottleneck? How does latency grow with load? |
| Observability | Can you debug issues from logs? Do you have metrics dashboards? |
| Security | How do you handle secrets? Are inputs validated and sanitized? |
| Maintainability | Is the code tested? Is there documentation? Can someone else deploy this? |
| Cost | What is your cost per query? How do you control spend? |
| Compliance | Is PII handled properly? Are there audit trails? |
Cost Engineering:
Production GenAI systems have real costs. Demonstrate awareness:
- Track token usage per request
- Implement caching for common queries
- Use smaller models for simple tasks
- Consider request batching
- Monitor and alert on spend
Example Cost Dashboard:
# Track costs per requestclass CostTracker: def __init__(self): self.metrics = { "input_tokens": 0, "output_tokens": 0, "embedding_tokens": 0, "total_cost_usd": 0.0 }
def log_llm_call(self, model: str, input_tokens: int, output_tokens: int): rates = { "gpt-4o": {"input": 0.0025, "output": 0.01}, # per 1K tokens "gpt-4o-mini": {"input": 0.00015, "output": 0.0006} } rate = rates.get(model, rates["gpt-4o-mini"])
cost = (input_tokens * rate["input"] + output_tokens * rate["output"]) / 1000
self.metrics["input_tokens"] += input_tokens self.metrics["output_tokens"] += output_tokens self.metrics["total_cost_usd"] += cost
return cost10. Summary and Key Takeaways
Section titled “10. Summary and Key Takeaways”Building a portfolio that gets you hired requires more than following tutorials. It requires demonstrating production thinking, architectural judgment, and the ability to learn from mistakes.
Key Principles:
-
Quality over quantity. Three exceptional projects outperform ten shallow ones.
-
Build for the role you want. Junior projects demonstrate learning ability. Senior projects demonstrate architectural judgment.
-
Show your work. Document decisions, include architecture diagrams, write tests, deploy to production.
-
Prepare to discuss. Your projects will be 60-70% of technical interviews. Know them deeply.
-
Iterate based on feedback. Share your projects. Get code reviews. Improve based on critique.
Recommended Project Sequence:
| Career Stage | Projects | Focus |
|---|---|---|
| Beginner | Document Q&A, Resume Analyzer | Code quality, basic patterns, deployment |
| Intermediate | Advanced RAG, Research Agent, Code Review | System design, optimization, integration |
| Advanced | Fine-tuned Model, Enterprise KB, Data Analyst | Architecture, scale, technical leadership |
Next Steps:
- Choose one project matching your target career level
- Build it following the specifications in this guide
- Deploy it and create a live demo
- Write a comprehensive README with architecture decisions
- Practice explaining it at multiple depths
- Iterate based on feedback
Your portfolio is a product. Treat it with the same rigor you would apply to production code at a top company. The effort invested will be reflected in interview performance and job offers.
Last updated: February 2026. Project specifications reflect current industry standards and hiring expectations.